Phenotyping a diversity panel of quinoa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest approach

نویسندگان

چکیده

Abstract Given its high nutritional value and capacity to grow in harsh environments, quinoa has significant potential address a range of food security concerns. Monitoring the development phenotypic traits during field trials can provide insights into varieties best suited specific environmental conditions management strategies. Unmanned aerial vehicles (UAVs) promising means for phenotyping offer new relative plant performance. During trial exploring 141 accessions, UAV-based multispectral camera was deployed retrieve leaf area index (LAI) SPAD-based chlorophyll across 378 control saline-irrigated plots using random forest regression approach based on both individual spectral bands 25 different vegetation indices (VIs) derived from imagery. Results show that most VIs had stronger correlation with LAI measurements than bands. including red-edge band importance predictions, while near infrared (but not band) improved prediction models. When applied treatments (i.e. or saline), models trained all data saline data) achieved mapping accuracies (R 2 = 0.977–0.980, RMSE 0.119–0.167) 0.983–0.986, 2.535–2.861). Overall, study demonstrated remote sensing is only useful retrieving important quinoa, but machine learning available robust predictions abiotic stress experiments.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest

Spatial and temporal variations in canopy structure and leaf biochemistry have considerable influence on fluxes of CO2, water and energy and nutrient cycling in vegetation. Two vegetation indices (VI), NDVI and Macc01, were used to model the spatio-temporal variability of broadleaf chlorophyll content and leaf area index (LAI) across a growing season. Ground data including LAI, hyperspectral le...

متن کامل

construction and validation of a computerized adaptive translation test (a receptive based study)

آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...

Inversion of Forest Leaf Area Index Based on Lidar Data

Leaf area index (LAI) is an important parameter of vegetation ecosystems, which can reflect the growth status of vegetation, and its inversion result has important significance on forestry system. The inversion values of forest LAI exists a certain deviation using traditional method. The airborne LiDAR technology adopts a new type of aerial earth observation method and makes it possible to esti...

متن کامل

Estimation of Leaf Area Index and Chlorophyll for a Mediterranean Grassland Using Hyperspectral Data

The study shows that leaf area index (LAI) and canopy chlorophyll content can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of LAI and chlorophyll content. We tested the utility of univariate techniques, involvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Precision Agriculture

سال: 2022

ISSN: ['1385-2256', '1573-1618']

DOI: https://doi.org/10.1007/s11119-021-09870-3